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Fluid flow in porous media drives the transport, mixing, and reac-
tion of molecules, particles, and microorganisms across a wide
spectrum of natural and industrial processes. Current macroscopic
models that average pore-scale fluctuations into an effective
dispersion coefficient have shown significant limitations in the
prediction of many important chemical and biological processes.
Yet, it is unclear how three-dimensional flow in porous struc-
tures govern the microscale chemical gradients controlling these
processes. Here, we obtain high-resolution experimental images
of microscale mixing patterns in three-dimensional porous media
and uncover an unexpected and general mixing mechanism that
strongly enhances concentration gradients at pore-scale. Our
experiments reveal that systematic stretching and folding of
fluid elements are produced in the pore space by grain con-
tacts, through a mechanism that leads to efficient microscale
chaotic mixing. These insights form the basis for a general kine-
matic model linking chaotic-mixing rates in the fluid phase to
the generic structural properties of granular matter. The model
successfully predicts the resulting enhancement of pore-scale
chemical gradients, which appear to be orders of magnitude
larger than predicted by dispersive approaches. These findings
offer perspectives for predicting and controlling the vast diver-
sity of reactive transport processes in natural and synthetic porous
materials, beyond the current dispersion paradigm.

porous media | reactive transport | chaotic mixing | chemical gradients

F luid mixing in porous media plays a key role in a range
of natural and industrial systems (1–3). In these confined

environments, mixing enables or limits reactions controlling the
degradation of contaminants in the subsurface; the cycles of
biogeochemical elements such as nitrogen, iron, and carbon;
and the sequestration of CO2 in deep reservoirs (4–10). Mix-
ing also shapes the nutrient landscapes and chemical gradients
seen by bacteria evolving in soils or medical systems (11, 12)
and facilitates chemical processes in drug delivery, packed bed
reactors, flow batteries, or catalysts (13–15). Increasing evidence
of sustained chemical gradients and incomplete mixing below
the pore-scale, along with associated impacts upon chemical
reactions (3, 16–18), have questioned the relevance of macro-
scopic dispersion coefficients to capture these processes (1).
Yet, it is currently unknown how three-dimensional flow topolo-
gies in porous structures control microscale mixing rates and
concentration gradients.

Recent theories (19, 20) have suggested that laminar flow
through three-dimensional porous media may possess the basic
ingredients for chaotic advection (e.g., the exponential defor-
mation of fluid elements), which would represent a possible
mechanism for the enhancement of microscale chemical gradi-
ents and the persistence of incomplete mixing at the pore-scale.
These chaotic dynamics may have particularly important con-
sequences for microbial processes, a broad range of which are
hosted in porous environments (21). Biological processes in tur-
bulent flows have been shown to be deeply altered by chaotic
advection, which promotes coexistence of competitive microbial
species (22) and affects the chemotactic responses of microor-

ganisms (23). However, whether such chaotic dynamics can
spontaneously develop in laminar flows through porous media
remains on open question.

A key experimental barrier to the direct imaging of solute
advection in three-dimensional porous materials is their pre-
dominantly opaque nature. While X-ray microtomography tech-
nologies have progressed significantly (24), they still cannot
resolve the fine structures produced below pore-scale. In con-
trast, use of visible-spectrum refractive-index matching between
the solid and the fluid phases represents a viable alternative
to observe solute mixing, as obtained with hydrogel beads in
water (25). However, as molecular diffusion eventually masks
the deformation of dyed fluid elements, a direct measurement
of fluid deformation in random porous media is an outstanding
challenge. Here, we overcome these limitations by performing
high-resolution laser imaging of the evolution of a low-diffusivity
fluorescent dye plume through a column of optically trans-
parent borosilicate spheres via high-precision refractive-index
matching (Fig. 1). This technique allows reconstruction of the
three-dimensional dye plume at unprecedented resolution, thus
providing direct experimental observation of pore-scale fluid
deformation and mixing in porous media. These data reveal the
hitherto unknown role of grain contacts in controlling folding
and stretching of fluid elements, a mechanism that generates
strong chaotic advection and significantly enhances chemical gra-
dients at the microscale. Since grain contacts are inherent to all
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Fig. 1. (A) Experimental dye plume with backbone filament (red lines) at selected stages of the folding mechanism (run III; Movie S4). Beads have been
shrunk by 40%, and white lines depict the contact line joining bead centers; surrounding beads are not shown. (B) Cross-sections detailing the typical
folding stages (run I; Movie S3). Upon passing the contact point between beads 1 and 2 (B.0), the filament is stretched (diverging arrows) along the contact
plane (dashed line) and compressed in the perpendicular direction (converging arrows). After contact (B.1), the directions of stretching and compression are
inverted, and a cusp forms, creating a fold (B.2) that is advected over the subsequent contact between beads 3 and 4 (B.3). Other experimental runs and
numerical simulations are reported in SI Appendix, Figs. S1 and S2 and Movie S5.

granular porous materials, we deduce that chaotic mixing is ubiq-
uitous in flow through all such materials, potentially impacting a
large range of fluid-borne phenomena in natural and engineered
systems.

Three-Dimensional Imaging of Mixing Patterns in Porous Media. We
observed three-dimensional fluid deformation and solute mix-
ing in laminar flows through monodispersed random bead packs
of diameters d =7, 10, and 20 mm, optically matched into a
glycerol–water fluid mixture (see Fig. 5). A fluorescent dye is
continuously injected upstream of the transparent column as a
thin tube of radius L0� d (Fig. 2A) and advected downstream
by the porous flow at the mean longitudinal advection veloc-
ity u . Cross-stream concentration patterns of the dye plume are
imaged in the pore-space via a translational scan using a laser
sheet and a camera. The dye cross-section rapidly evolves into
a highly elongated (Fig. 2B) and striated filamentous structure
(Fig. 2C) due to transverse stretching and folding of fluid ele-
ments in pores (Movies S1–S3). The combination of a highly
viscous fluid mixture and a high-molecular-weight dye results in
laminar flows of low diffusivity, characterized by Reynolds num-
bers on the order of Re = 7 · 10−3 and Péclet numbers on the
order of Pe = 104 (SI Appendix, Table S1). The deformation of
the dye plume (Fig. 1A) thus closely shadows that of the advected
fluid, facilitating direct visualization of pore-scale fluid defor-
mation. We use spline fitting on the images to reconstruct the
backbone of the cross-sectional dye footprint, called a filament,
and estimate its total length L(x ) for 9 to 14 bead diameters
downstream from the injection point (Fig. 2 and Movie S3).

The mean total filament elongation L/L0, averaged over the
18 statistically equivalent packings (SI Appendix, Table S1),

exhibits clear exponential growth with normalized longitudi-
nal distance x/d (Fig. 3). The dimensionless exponent µ≡
ln(L/L0)/(x/d)= 0.29± 0.01 is independent of both bead
diameter and flow rate and is known as the topological entropy
of the flow (26). Via the central limit theorem, µ is related to
the mean λ and variance σ2

λ of the dimensionless stretching rate
(Materials and Methods)

µ=λ+σ2
λ/2. [1]

The dimensionless parameter λ is also known as the Lyapunov
exponent (26), which can be converted into a mean stretch-
ing rate per unit time as λu/d . In addition to stretching, the
filament also undergoes highly localized folding events that
result in closely foliated striations (Fig. 2C). These fluid defor-
mations are the hallmarks of chaotic mixing, thus permitting
exponential elongation of material elements in a finite-sized
domain.

The Role of Grain Contacts in Folding. Folding of dye filaments
is consistently initiated downstream of contact points between
two beads (Fig. 1B and SI Appendix, Fig. S1). The cusp-shaped
geometry near grain contacts means that when crossing a con-
tact point (Fig. 1, B.0), fluid elements are first compressed in
the direction joining the two bead centers and stretched in the
perpendicular direction. Downstream of the contact point, the
direction of compression and stretching are exchanged and a
cusp forms locally in the dye filament (Fig. 1, B.1). This cusp is
stretched in the following pore space, leading to a folded filament
made of two straight segments (Fig. 1, B.2). This stretching and
folding process is repeated sequentially as the folded filament
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Fig. 2. Cross-stream sections of the fluorescent dye plume at increasing dis-
tances from the injection: x/d = 0 (A), 3.2 (B), and 9.3 (C) (run II; Movies S1
and S2). Colors represent local dye concentrations. Beads appear in deep
blue. A spline curve (dotted black lines) is used to fit the filament back-
bone on each cross-section image, from which the total filament length L is
obtained.

encounters other contact points (Fig. 1, B.3), leading to thin
solute dye foliations that are the hallmarks of chaotic advection
(26) (Fig. 2C).

Recent studies (19, 20) identified the role of separation and
reattachment points on open grain boundaries (saddle points)
in generating exponential stretching of fluid elements. Here, we
uncovered the distinct role of contact points between grains in
generating systematic folding of fluid elements. Simulations of
laminar flow in periodic bead packings (SI Appendix, section
A) show that attracting and repelling stream surfaces (unsta-
ble and stable manifolds) produced by these saddles indeed
control stretching of material lines in the pore space. We
found that these manifolds intersect orthogonally at grain con-
tacts (SI Appendix, Fig. S2 and Movie S5), where both the
local flow velocity and the stretching rate vanish and man-
ifold stabilities are exchanged, so that repelling stream sur-
faces become attracting and vice versa. Hence, over a contact
point, the local flow structure imparts finite curvature to fluid
elements, which results in the sharp folds observed experi-
mentally (Fig. 1). The repetition of this basic stretching and
folding sequence over successive contact points offers a sim-
ple geometric framework to relate stretching rates to granular
structure.

Linking Stretching Statistics to the Porous Structure. Sharp folding
of dye filament in between contact points produces a number nc

of localized cusps of strong curvature, separated by straight seg-
ments of moderate curvature (see Fig. 6). We define the mean
segment length as Lc =L/nc and the average area swept out by
a segment between two successive contact points as Sc =S/nc ,
where S is the total area swept by the filament. We find that Lc

and Sc both converge to stationary values (Fig. 3, Inset). Hence,
the average advection distance between two successive contact
points is statistically constant and equal to Xc =Sc/Lc ≈ 3.45 d .
Over this distance, a single elementary segment folds, giving

rise to two new straight elementary segments. Thus, over the
same distance, its length `(X ) must double to maintain 〈`〉=Lc

constant, so that `(X )= 2(X/Xc). Hence, the average dimen-
sionless stretching rate λ of elementary fluid segments can be
estimated as

λ≡ d(log `)
d(X /d)

=
log 2

Xc/d
≈ 0.21. [2]

This rate is larger than found in synthetic porous media, such as
random pore networks (λ≈ 0.12) (19) and body-centered cubic
assemblies of spheres (λ≈ 0.128) (27), reflecting the remark-
ably efficient stretching and folding process occurring in random
granular media. The variance of the stretching rate can be esti-
mated from Eq. 1 as σ2

λ≈ 0.16, a value comparable to the mean
stretching rates λ, as it is typically the case in space-filling chaotic
flows (28).

As shown by Eq. 2, the strength of chaotic advection is entirely
governed by the spatial frequency X−1

c with which segments
encounter grain contacts. We show in Materials and Methods
that in isotropic packings, Xc ≈ 8 log 2φzcdp/3, with zc the coor-
dination number (the mean number of contacts per bead), φ
the solid volume fraction, and dp the mean pore diameter.
This yields a simple geometric estimate of the dimensionless
Lyapunov exponent

λ≈ 3

8

φzcdp
d

. [3]

Eq. 3 is also applicable to nonisotropic packings with a prefac-
tor that quantifies the distribution of orientations of the contact
lines joining bead centers with respect to the mean flow direction
(Materials and Methods). Insertion of the experimental values
zc =6, φ=0.5, and dp/d =0.24 in Eq. 3 yields λ≈ 0.27, which is
in reasonable agreement with the experimental estimate of 0.21,
given the slight anisotropic nature of our experimental pack-
ings (Materials and Methods). Eq. 3 provides a quantitative link
between microscopic fluid stretching rates and porous media
structural properties.

Discussion
Stretching and Folding Sustain Microscale Chemical Gradients.
Repeated sequences of stretching and folding leads to exponen-
tial compression of fluid elements that can sustain concentra-
tion gradients at the pore-scale (Fig. 2). These concentration
gradients are locally controlled by the balance between diffu-
sive spreading rate (Dm/s

2), with Dm the molecular diffusivity,

Fig. 3. Total filament elongation L/L0 with respect to the normalized pore
advection distance x/d from the dye injection point. (Inset) Convergence
of the mean segment length Lc = L/nc and area Sc = S/nc toward constant
values, with nc, the number of cusps.
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and the mean compression rate (λu/d), which is equal to the
stretching rate in steady incompressible flows. These two rates
equilibrate at the Batchelor scale

sB =
√

Dmd/(λu), [4]

which is the characteristic length scale of solute-concen-
tration fluctuations. Pore-scale mixing is thus characterized by
the dimensionless length scale s∗B = sB/d , which is related to the
macroscopic Péclet number Pe= ud/Dm as,

s∗B =(λPe)−1/2. [5]

For s∗B > 1, the length scale of solute-concentration fluctuations
are larger than the grain diameter, and therefore concentration
fields are expected to be well mixed at the pore-scale. Our esti-
mation of the Lyapunov exponent λ implies that the transition
to incomplete pore-scale mixing occurs at Péclet numbers above
5, values commonly encountered in many natural and industrial
contexts (29). This suggests that a broad range of biogeochemical
processes are possibly affected by incomplete pore-scale mix-
ing and chaotic advection. From results established on chemical
and microbial processes in turbulent and chaotic flows at compa-
rable mixing rates (22, 23), it is possible to anticipate a range
of possible effects of chaotic mixing in porous media, includ-
ing altered effective kinetics and microbial growth dynamics,
increased biodiversity, and enhanced benefit of sensing. Because
they can only develop in three-dimensional topologies under
steady conditions (26), these chaotic dynamics are generally
absent in quasi two-dimensional microfluidic experiments used
to investigate the microscale interactions between flow, concen-
tration gradients, chemical reactions, and microbial processes (3,
11, 30). Novel experiments in three-dimensional porous media
and new modeling frameworks are thus needed to explore these
dynamics.

Microscale Mixing Model. The experiments in this study have
used high Péclet numbers to uncover the rate and kinemat-
ics of fluid deformation in porous media. These results may
be extended to the prediction of macroscopic mixing rates and
concentration statistics at arbitrary Péclet numbers via lamel-
lar mixing models that couple stretching and diffusion (31–33).
In SI Appendix, section C, we derive such a mixing model and
compare its predictions in terms of dye-concentration statis-
tics to the experimental data. The lamellar model successfully
captures the measured exponential decay of the mean maxi-
mum solute concentration of dye filaments with longitudinal
distance cmax∼ exp(−(λ+σ2/2)x/d) (Fig. 4), as well as the
growth of concentration fluctuations caused by variability of
the Lagrangian stretching history. These predictions provide
an independent validation of the estimated mean and vari-
ance of the stretching rate, λ≈ 0.21 and σ2

λ≈ 0.16. In contrast,
conventional mixing models based upon macroscopic disper-
sion coefficients (1) ignore incomplete mixing at the pore-
scale and predict an algebraic decay of concentrations cmax∼
(x/d)−1/2 (SI Appendix, section B). From the normalized Batch-
elor scale (Eq. 5), pore-scale concentration fluctuations pre-
dicted by the lamellar model will persist for all Péclet numbers
larger than 5. In this range, macroscopic dispersion models
fails to resolve pore-scale concentration gradients, leading to
incorrect predictions of a broad range of reactive transport
dynamics (3, 16–18). Coupling lamellar mixing models with
reactive processes is therefore a promising avenue to capture
the effect of pore-scale incomplete mixing on biogeochemical
dynamics.

Porous Materials as Mixers. From Eq. 3, the mixing efficiency of
steady laminar flows through random bead packs (defined as

DataData Chaotic ModelChaotic Model Classical ModelClassical Model

 Fig.1a Fig.1a  Fig.1b Fig.1b  Fig.1c Fig.1c

Fig. 4. Experimental average (triangles) and SD (circles) of the local max-
imum concentration cmax along x. Values are normalized by the initial
maximum concentration c0. Classical model predictions are shown as black
dashed and dotted lines. Lamellar mixing model predictions for the aver-
age and SD of cmax are shown respectively as the green dotted line
and the purple continuous line (see SI Appendix, sections B and C for
derivations).

the ratio of the average stretching rate to the average strain
rate) is found to be 3% (SI Appendix, section D). This value
is comparable to the performance of industrial mixers (26)
and an order of magnitude larger than that of microfluidic
chaotic mixers (34), thus opening opportunities for exploiting
the mixing properties of porous materials. Chaotic advection
is known to both increase dispersion transverse to the mean
flow direction and retard longitudinal dispersion (35). It also
alters the transport of finite-sized particles such as colloids and
microorganisms (36) and may thus control their clustering in
the pore space and deposition on grain boundaries. In relat-
ing stretching rates to the porous microstructure, Eq. 3 offers
a possible pathway to the design of engineered porous materi-
als with optimum mixing characteristics. This concept may find
important applications in the design of heat exchangers; packed
bed filters and reactors, where transverse dispersion and mix-
ing act to enhance process efficiency; and for continuous flow
chemistry (15), such as pressure-driven chromatography, where
product selectivity and yield strongly depend upon the mini-
mization of longitudinal dispersion. These applications would
first require a validation Eq. 3 over a large range of packing
geometries.

Conclusions
Using high-resolution experimental imaging of microscale mix-
ing in three-dimensional granular media, we have demonstrated
the existence of efficient stretching and folding of fluid elements
at the pore-scale. We use these insights to develop a stochas-
tic model for the prediction of the Lyapunov exponent from the
geometric properties of the grain pack and validate this model
against experimental observations. The formalization of these
observations into a chaotic-mixing model, coupling stretching
and diffusion, demonstrates that incomplete mixing persists at
pore-scale for Péclet numbers above 5. This model captures the
the evolution of microscale chemical gradients, opening perspec-
tives for understanding, predicting, and controlling a large spec-
trum of physical, chemical, and biological processes, in natural
and engineered porous systems.

The discovery of systematic and efficient chaotic mixing in
single phase laminar flows through random bead packs—the
archetype of porous media—calls for deeper investigation of this

13362 | www.pnas.org/cgi/doi/10.1073/pnas.2002858117 Heyman et al.
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Fig. 5. Experimental setup for three-dimensional imaging of the mixing of
a fluorescent solute dye in optically matched porous bead packs. The dye
is continuously injected through a thin needle upstream of the granular
column, while maintaining a steady background laminar flow. After stabi-
lization of the solute dye plume, transverse cross-sections of concentrations
are obtained by displacing a laser sheet (wavelength, 488 nm; beam waist
50 µm; Oxxius) in the x direction while recording the emitted fluorescence
with a camera (16 bits; Hamamatsu ORCA-Flash4.0) mounted with a band-
pass filter (Midopt BN532) and oriented at an angle of 45◦ from the laser
plane. The perspective view is then orthorectified by a projective transform.

phenomenon in a broad range of systems, including polydisperse
packings, consolidated soils and rocks, and more complex flows,
such as multiphase, inertial, or non-Newtonian flows. While
these cases may act to increase the rate of mixing due to the
introduction of new flow phenomena, the fundamental kinemat-
ics described in this study must persist as they arise from the
underlying topology of the grain pack. The investigation of these
system-specific modulations of chaotic mixing in porous matter
form promising research perspectives.

Materials and Methods
Experimental Protocol. The porous column consists of a vertically ori-
ented rectangular column of cross-section 48×48 mm (Fig. 5), containing
monodisperse borosilicate glass beads (Sigmund Lindner GmbH) of diameter
d = 7, 10, or 20 mm that are loosely and randomly packed via gravitational
settling. The pore space between the beads is filled with a glycerol–water
mixture (1.4% wt/wt water) at controlled temperature (T = 25◦C). Fluid
flow is driven by a constant pressure difference imposed between the inlet
and outlet ports, respectively, at the top and bottom of the column. The
flow rate is continuously monitored at the outlet by a scale. Together with
the knowledge of the packing porosity, this provides an estimate of the
mean pore velocity, u. To visualize fluid flow and deformation through
the bead pack, a solute fluorescent dye (PromoFluor-488LSS) is continu-
ously injected in the upper part of the cell through a needle of internal
diameter L0 = 0.5 mm. The injected dye develops into a steady plume
downstream of the injection point. The mean flow velocity u is chosen
to be sufficiently low to get small Reynolds numbers and laminar flows
(Re = ud/ν≈ 5 · 10−3� 1, where ν≈ 700 cP is the kinematic fluid viscosity),
and fast enough for the dye Péclet number to be large and for fluid defor-
mation to be measured from the dye backbone (Pe = ud/Dm≈ 8.6 · 103,
where Dm≈ 2 · 10−11 m2s−1 is the molecular diffusivity of the dye in the
glycerol–water mixture). For representativeness, experiments are repeated

for multiple dye-injection locations and for various packing realizations and
bead diameters, as summarized in SI Appendix, Table S1. The coordinates
of the bead centers are determined via a three-dimensional Hough trans-
form on the image stack obtained by the translational laser scan, where the
background fluid fluorescence allows distinguishing the grains. From these
coordinates, several structural properties of the porous media are obtained:
φ, the solid volume fraction (the ratio of volume occupied by the beads
over the total column volume); zc, the coordination number (the number
of neighboring beads whose centers lie d± 5% away from the reference
bead); and dp, the mean diameter of the largest sphere inscribed in the pore
space, obtained by a distance transform computed on a voxelized image of
the fluid phase.

Reconstruction of the Dye-Filament Backbone. In each cross-stream section
of the solute dye plume, a one-dimensional backbone of the dye filament
is reconstructed via the adjustment of spline curves, and its total length L is
computed (Figs. 2 and 6A). In experimental run II (Fig. 2 and Movie S1), the
tracking is possible until downstream distance x = 9.27 d (beyond which the
diffusive filament merges with itself), corresponding to a total elongation
of L/L0≈ 167 (Fig. 2C), where L0 is the initial length of the dye-filament
backbone.

Distribution of Elongations. The sequential stretching and folding process
leading to exponential growth of the total filament backbone length L
implies that the length l of a fluid element follows a multiplicative ran-
dom process (28, 32), such that l grows as dl/dx* = γl, where x* = x/d
and γ is a random, statistically stationary stretching rate of mean λ and
variance σ2

λ. The length l thus results from the product of the succes-
sive stretching rates γ, such that log l is the sum of a series of inde-
pendent and identically distributed random variables. From the central
limit theorem, the distribution of log l must then converge with down-
stream distance toward a normal distribution of mean λx′ and variance
σ2
λx*. This convergence is obtained after a few bead diameters since

1) the dye-filament lengths increase exponentially and thus sample an

A

B

C

Fig. 6. (A) Reconstruction of filament backbone (black line) from dye
distribution and localization of high-curvature regions (red circles). (B)
Local curvature along the filament backbone (black line) with isolated
cusps (red circles) and threshold value κ= 103d−1 for cusp detection
(dashed line). Note that the endpoints of filaments are considered as
cusps, explaining why red circles can exist below κ. (C) Exponential
growth of the number (nc) of cusps in the filament backbone as a func-
tion of the advection distance (x/d) from the injection point. The fit-
ted exponent for nc (gray line) is similar to that for the total filament
length (dashed line), suggesting stationarity of the stretching and folding
processes.
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increasingly large number of independent stretching rates in the pore
space and 2) the stretching rates are distributed within pores, so that
several independent stretching rates are experienced over a unit diame-
ter distance. The mean value of l is thus such that 〈l〉∼ exp(µx*) with
µ=λ+σ2

λ/2, which sets the growth rate of the total filament length to
〈L/L0〉= exp(µx*).

Number of High-Curvature Regions. As shown in Fig. 1B, when the filament
is advected through contact points between beads, localized regions of
very high curvature develop in the filament backbone. We define cusps as
isolated regions of the filament backbone where the curvature κ of the
spline curve exceeds the threshold κ= 103d−1. We find (Fig. 6C) that the
total number nc of cusps in the filament backbone increases exponentially
with the downstream distance x/d at a rate similar to that of the total
filament length L. This suggests that stretching and folding events occur
in proportion to each other and that the resulting process is statistically
stationary.

Prediction of the Mean Stretching Rates from the Porous Media Properties.
Based on the consistently observed sequence of stretching and folding in
the pore space and its control by grain contacts (Fig. 1), we derive a general
expression for the magnitude of the Lyapunov exponent in random gran-
ular media as a function of the coordination number zc, the solid volume
fraction φ, the grain diameter d, and the mean pore diameter dp. Since seg-
ment lengths must double, on average, each time the segment encounters a
contact, that is for each distance Xc, the Lyapunov exponent can be derived
from Eq. 2 as λ= d log 2/Xc = d log 2/(Sc/Lc), which requires estimating the
mean segment length Lc and the mean surface area Sc swept by segments
between successive contact points. A geometric estimate for the mean seg-
ment length Lc is obtained by assuming that an individual segment doubles
its length at the constant exponential rate λ until it reaches the mean pore
diameter dp, where it inevitably collides with a contact point located at
Xc downstream, e.g., Lc(x) = dp/2 exp(log 2 x/Xc). This expression yields the
average value

Lc ≈
dp

2 log 2
. [6]

From tomographic reconstruction of all of the experimental runs, the
average pore diameter is dp≈ 0.24 d (Materials and Methods). Thus, we
estimate Lc ≈ 0.17d, which is in excellent agreement with the observa-
tions (Fig. 3). To develop an estimate of Sc, we consider the volume
density ρV of contact points in the three-dimensional bead pack. As the
number of grains per unit volume is 6φ/(πd3) and there are zc/2 inde-
pendent contacts per grain, the volume density of contact points is then
ρV = 3φzc/(πd3). Conversely, Sc is equal to the inverse of the areal den-
sity ρA of contact points in a filament sheet. To develop a relationship

between ρV and ρA, we consider a series of filament sheets that arise
from continuously injected line sources extending along length Z in the
cross-stream z-coordinate of the column and are advected over distances
X. These series of injection lines are also distributed along distance Y in
the other cross-stream y-direction. If we consider the average number nV

of contact points in the volume V = XYZ, then the number nA of contact
points contained within a filament sheet is nA = ¯̀/YnV , where ¯̀ is the
average span of filament sheet in the y-direction that pass through a com-
mon contact point. The simplest estimate for ¯̀ is obtained by considering
the behavior of filament sheets in a open laminar flow over two spheres
in contact at an angle α with the mean flow direction x. From symme-
try arguments, the horizontal span `(α) is given by the projection in the
plane normal to x of the contact line connecting the two sphere centers.
Thus, `(α) = d sinα, and ¯̀ is given by the mean of `(α) over the distribution
of contact angles. As ρV ≡ nV/(XYZ) and ρA≡ nA/(XY), then ρA = ¯̀ρV . For
isotropic packings, contact lines are uniformly orientated in the space, and
α is distributed as p(α) = sinα. Averaging over this distribution then yields
¯̀≡ d sinα= dπ/4. From the results above, Sc for isotropic packings is then
estimated as

Sc = 1/ρA =
πd3

3¯̀φzc
. [7]

For anisotropic packings, the distribution of contact orientations may devi-
ate from sinα, thus yielding different values for ¯̀. Eqs. 6 and 7 provide the
value of the mean fold distance Xc = Sc/Lc, and from Eq. 2, the Lyapunov
exponent reads

λ= ¯̀3φzcdp

2πd2
. [8]

Using the estimates of φ, zc, and dp obtained from tomographic recon-
struction and ¯̀/d =π/4≈ 0.78 for isotropic packings, Eq. 8 yields λ= 0.27,
a value comparable to the experimental estimate (λ= 0.21). The slight
overestimate of λ can be explained by the anisotropy introduced by the
gravitational packing of the beads and the finite size of the experimen-
tal column. Indeed, independent measurements of ρV = 2.86 d−3 and of
Sc = 0.58 d2 (Fig. 3) indicate that, experimentally, ¯̀/d = (dρV Sc)−1≈ 0.6,
instead of ¯̀/d = 0.78 expected for isotropic packings. Using this value in Eq.
8 yields λ≈ 0.21, in much better agreement with the experimental estimate.

Data Availability. All data needed to evaluate the conclusions in this paper
are available in the main text or in SI Appendix.
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